
[7] A. V. Hense. Denotational semantics of an object-oriented programming lan-

guage with explicit wrappers. Formal Aspects of Computing, 5(3):181{207,

1993.

[8] A. V. Hense. Polymorphic Type Inference for Object-Oriented Programming

Languages. PhD thesis, Universit�at des Saarlandes, Fachbereich 14, D-66123

Saarbr�ucken, 1994. forthcoming.

[9] R. E. Johnson, J. O. Graver, and L. W. Zurawski. TS: An optimizing com-

piler for Smalltalk. In Object-Oriented Programming Systems, Languages and

Applications, pages 18{26. ACM, Sept. 1988.

[10] P. Kursawe. How to invent a Prolog machine. In Proc. Third International

Conference on Logic Programming, pages 134{148. Springer LNCS 225, 1986.

[11] D. MacQueen. Modules for Standard ML. In Polymorphism The ML-LCF-Hope

Newsletter, 1985. Vol. II, No. 2.

[12] E. Meijer. A taxonomy of function evaluating mechanisms. In Proceedings of

the Workshop on Implementation of Lazy Functional Languages, Sept. 1988.

Report 53.

[13] U. Nilsson. Towards a Methodology for the Design of Abstract Machines for

Logic Programming. Journal of Logic Programming, pages 163{188, 1993.

[14] S. Pemberton and M. Daniels. Pascal Implementation: The P4 Compiler. Ellis

Horwood, 1982.

[15] R. Wilhelm and D. Maurer.

�

Ubersetzerbau { Theorie, Konstruktion, Generie-

rung. Springer Verlag, Berlin Heidelberg, 1992. in German.

[16] R. Wilhelm and D. Maurer. Compiler Design { Theory, Construction, Gener-

ation. Addison-Wesley, 1994. to appear.

20

� In an implementation, one would have one method lookup table per class, not

one per object as our description suggests.

� The construction of method lookup tables has not been described.

� O'small is originally a dynamically typed language. The only phase where

we have included a test is in the instruction send m,n where the method is

looked up. Of course there must be further tests. In reality, every stack and

heap entry must contain a tag saying whether it is a reference to an object,

an integer, or a boolean. These tags have to be tested in all occasions.

There exists a prototype implementation of this machine in Sml. From its level

of abstraction it is between the description of this article and a fast implementation

of a machine for O'small.

An alternative to tags and dynamic checking would be static type checking [8].

The speedup gained by type inference and other techniques of static analysis are

interesting for future research.

Acknowledgements We thank Reinhold Heckmann for carefully reading a draft

version and Helmut Seidl for valuable comments.

References

[1] E. B�orger and D. Rosenzweig. The WAM { de�nition and compiler correctness.

Technical Report TR - 14/92, Dipartimento di Informatica, Universita di Pisa,

1992.

[2] C. Chambers and D. Ungar. Customization: Optimizing compiler technology

for SELF, a dynamically-typed object-oriented programming language. SIG-

PLAN Notices, 24(7):146{160, 1989.

[3] C. Chambers and D. Ungar. Making pure object-oriented languages practical.

In Object-Oriented Programming Systems, Languages and Applications, pages

1{15. ACM, Oct. 1991.

[4] C. Chambers, D. Ungar, and E. Lee. An e�cient implementation of SELF, a

dynamically-typed object-oriented language based on prototypes. In Object-

Oriented Programming Systems, Languages and Applications, pages 49{70.

ACM, Oct. 1989.

[5] A. Goldberg and D. Robson. Smalltalk-80: the Language. Addison-Wesley,

1989.

[6] A. V. Hense. Wrapper semantics of an object-oriented programming language

with state. In T. Ito and A. R. Meyer, editors, Theoretical Aspects of Computer

Software, volume 526 of Lecture Notes in Computer Science, pages 548{568.

Springer-Verlag, Sept. 1991.

19

and it gives us a set of methods and the number of all instance variables of this

class. The function classInfo is de�ned inductively. classInfo of the class Base is

(;; []). If the program contains the class de�nition

class c

1

inheritsFrom c

2

def var v

1

:= e

1

.

.

.

var v

m

:= e

m

in meth m

1

(args

1

) sl

1

.

.

.

meth m

k

(args

k

) sl

k

ni

and classInfo(c

2

) = (mset

2

; numOfInstVars

2

) then we de�ne classInfo(c

1

) as

(mset

2

� f(m

1

; c

1

); : : : ; (m

k

; c

k

)g;numOfInstVars

2

+m)

where � is a right preferential union operator that overwrites if there is a pair with

the same method name. The pairs (m

i

; c

i

) of method name and class name can be

regarded as the identity of a method de�nition. There will be a one to one mapping

from these identities to labels into the code where these methods start. We assume

that no class is declared twice in the program.

4.6 Explicit Wrappers

The O'small dialect with explicit wrappers [7] can also be translated by our com-

piler. Since wrappers are top-level like classes, we can transform wrappers away by

building the corresponding classes. We will not go into the details of the transfor-

mation here; the interested reader may refer to the semantics in [6, 7].

5 Conclusion

The decision to restrictO'small classes to the top-level has had a great inuence on

the implementation of the language. The method-lookup tables can be constructed

at compile time. What remains to be done at run time is to determine the class of

the receiver and jump to the correct address. Therefore, late binding can be done

in constant time. Of course, method inlining is impossible in the general case.

TheO'small-machine is considerably simpler than the MaMa or the P-Machine.

This may be partly due to the simplicity of O'small. But even if O'small were

enriched by more complicated scoping rules and additional constructs the machine

would remain simple. Object-oriented programming languages like Smalltalk and

O'small are simpler than e.g. Pascal because they do not have nested procedure

declarations: you cannot declare a class inside another one. Programming experience

shows that it is indeed not clear if nested procedure declarations are really necessary.

A at structure might well be su�cient.

The presentation of the abstract machine has been simpli�ed in order to make

it readable.

18

codeC (class c

1

inheritsFrom c

2

def var v

1

:= e

1

.

.

.

var v

m

:= e

m

in meth m

1

(args

1

) sl

1

.

.

.

meth m

k

(args

k

) sl

k

ni) =

l

c

1

; init

: codeE super. init [];

codeSL (v

1

:= e

1

; : : : ; v

m

:= e

m

) [v

i

7! (INST; o�set + 1)]

m

i=1

false 0;

return

l

m

1

;c

1

: codeM (meth m

1

(args

1

) sl

1

) [v

i

! (INST; o�set+ i)]

m

i=1

.

.

.

l

m

k

;c

1

: codeM (meth m

k

(args

k

) sl

k

) [v

i

! (INST; o�set + i)]

m

i=1

where (, o�set) = classInfo c

2

The code for a class consists of two parts. The �rst part creates and initializes new

objects. This code is executed each time an object has to be created by new c.

codeE new c � = mark;

makeobject maketable methodSet, numOfInstVars;

call l

c; init

; 0

where (methodSet; numOfInstVars) = classInfo c

The initialization of instance variables is treated like a statically bound procedure

call, i.e. like super. The idea behind this is a program transformation where each

class is equipped with an initialization method. This method consists of calling the

initialization method of the super class and a sequence of assignments to the instance

variables of the current class. We write super. init for calling this initialization

method. The underscore indicates that this method name is di�erent from those

that can be used in the program. We assume that the static analysis guarantees

that the visibility of previously de�ned instance variables in later de�nitions. This

is not complicated because O'small has no global variables. The instance variables

of each class declaration are initialized starting from the ancestor class declaration

below class Base and going to the current class declaration. Class Base has the

empty initialization code.

The second part consists of the methods of the class declaration. These methods

have only access to the instance variables of this class declaration (encapsulated

instance variables).

Before we start the translation proper we perform a phase of static analysis where

the class information is collected from the class declarations, i.e. the inheritance

hierarchy is unfolded. The corresponding function is called

classInfo : C ! 2

Meth

� N

0

17

The expression self must be translated to a code sequence that loads the current

object (pointer COP) on top of the stack. The current object pointer is lying exactly

where the register FP is pointing to. Thus, we can get it with pushloc 0.

codeE (super:m(e

1

; : : : ; e

n

)) � = mark;

pushloc 0;

codeE e

1

�;

.

.

.

codeE e

n

�;

call l

m

,n

The sending of a message to super is similar to the sending of a message to self.

We start a new stack frame. The receiver of a message to super is the current

object, which we can get with pushloc 0. The arguments are evaluated as usual.

The di�erence to ordinary message passing lies in the last instruction. The message

is not looked up in the lookup table of the current object. Instead, it is directly

called (static binding, not late binding). It is the corresponding method of the super

class. In the instruction call l

m

,n, the label l

m

is the code address of the method

and n is the number of arguments.

codeM (methm(x

1

; : : : ; x

n

) sl) � =

codeSL sl �[x

i

! (LOC; i)]

n

i=1

true n;

return

At run time, we have the following situation on the stack when the code of a method

is executed. The three organizational cells of the stack frame are �lled with the right

values (Fig. 5) and the n arguments of the message sent are on the stack. The code

for the statement list is executed leaving the resulting value on top of the stack. The

instruction return sets the register PC to the continuation address, the register FP

to the previous stack frame, and slides the result of the method upwards to the new

top of the stack. As a result of all this, the current stack frame is given up and we

are again in the previous one.

4.5 Classes and Objects

The code for class declarations is the most complicated one. Therefore, we will

describe it in a simpli�ed form. The exact description is contained in the code

scheme.

We distinguish classes from class declarations. A class declaration is the syntactic

object. E.g., in Fig. 1, the class PAccount contains the instance variable fee and

the method transact. A class contains the instance variables and methods of all

ancestor classes. In Fig. 1, the class PAccount has two instance variables and four

(sic !) methods (one is overwritten).

16

In a statement list s

1

; : : : ; s

n

, the values of s

1

; : : : ; s

n�1

are de�nitely not needed.

The value of s

n

is needed if the value of the whole sequence is needed.

codeSL (s

1

; : : : ; s

n

) � valueNeeded locVars =

codeS s

1

� false locVars;

.

.

.

codeS s

n�1

� false locVars;

codeS s

n

� valueNeeded locVars

For the main program, the classes are translated consecutively. The function codeSL

is called with an empty local environment. The �nal value of the statement list is

not needed. The instruction halt simply halts the machine. This instruction is not

listed in the table.

codeP (class

1

;: : : ;class

r

; sl) = codeC class

1

;

.

.

.

codeC class

r

;

codeSL sl [] false 0;

halt

4.4 Methods

Certainly the most frequently used construct inO'small is the sending of a message

e:m(e

1

; : : : ; e

n

). We call e the receiver of the message, m the message selector, and

e

1

; : : : ; e

n

the arguments.

codeE (e:m(e

1

; : : : ; e

n

)) � = mark;

codeE e �;

codeE e

1

�;

.

.

.

codeE e

n

�;

send m,n

The �rst instruction mark creates the beginning of a new stack frame. The value

of the FP register is saved into the second cell of the new frame (Fig. 5). The �rst

cell that will contain the continuation address is left uninitialized for the moment.

It will be set in the instruction send m,n. Now we evaluate the expression e that

designates the receiver of the message. Its evaluation leaves a reference to this object

(COP, current object pointer) in the third cell of the new frame (Fig. 5). Before the

receiver becomes the current object, we evaluate the arguments leaving their values

on the stack. The instruction send m,n sends the message m with n arguments

to the receiver. The register FP is set to the third organizational cell containing

a reference to the receiver who becomes the new current object. The continuation

address is saved into the �rst cell of the stack frame. The method is looked up in

the new current object and the register PC is set to the beginning of the code of the

method. Note that the instruction return is the last instruction of each method's

code.

codeE self � = pushloc 0

15

codeS (output e) � true locVars =

codeE e �;

output

codeS (output e) � false locVars =

codeE e �;

output;

pop 1

A statement can also be an expression. There are two ways of translating it depend-

ing on whether the value is needed or not.

codeS e � true locVars =

codeE e �

codeS e � false locVars =

codeE e �;

pop 1

Now, we come to the less familiar constructs. A def-statement extends the current

environment by adding bindings to the variables v

i

; i = 1; : : : ;m.

codeS (def var v

1

:= e

1

.

.

.

var v

m

:= e

m

in

sl

ni) � valueNeeded locVars =

codeE e

1

�;

codeE e

2

�[v

1

! (LOC; locVars + 1)];

.

.

.

codeE e

m

�[v

i

! (LOC; locVars+ i)]

m�1

i=1

;

codeSL sl �[v

i

! (LOC; n+ i)]

m

i=1

(locVars+m);

removeLocVars m valueNeeded

The variables v

i

are initialized with the values of the expressions e

i

. The expressions

e

i

are evaluated one by one leaving their values on the stack. The fourth parameter

locVars of codeS contains the size of the local environment before the execution

of the def-statement. After the evaluation of e

i

the value of e

i

lies at position

FP + locVars + i. Thus, v

i

is assigned the address (locVars; n + i). Note that

expression e

i

can refer to variables v

j

with j < i. Therefore, we must gradually

adjust the address environment when translating the e

i

's. Finally, the statement list

sl is executed in the environment containing all local variables. After the execution

of sl the environment for the v

i

's has to be removed from the stack. If the value of

the def-statement is not needed, this can be achieved by simply decrementing the

stack pointer SP by m. Otherwise, the execution of sl has computed a value on the

stack. The instruction slide m moves this value m cells up the stack.

removeLocVars n valueNeeded =

�

slide n if valueNeeded

pop n otherwise

14

codeS (v := e) � valueNeeded locVars =

codeE e �;

storeVar v �;

pop 1;

unit valueNeeded

Since in O'small every statement leaves a value on the stack, we must also leave

something after an assignment. According to the semantics of O'small we leave a

dummy value called `unit' on the stack. This is expressed by the following auxiliary

function.

unit valueNeeded =

8

<

:

pushunit if valueNeeded

� otherwise

As above, an auxiliary function storeVar looks up v in � and generates the appro-

priate instructions.

storeVar v � =

8

<

:

storeloc i if �(v) = (LOC; i)

storeinst i if �(v) = (INST; i)

4.3 Complex Statements

We present the translation of conditionals, while-loop, output statements and ex-

pression as statements without much ado.

codeS (if e then sl

1

else sl

2

fi) � valueNeeded locVars =

codeE e �;

jfalse l

1

;

codeSL sl

1

� valueNeeded locVars;

ujmp l

2

;

l

1

:codeSL sl

2

� valueNeeded locVars;

l

2

:

Conditionals and loops are translated by the usual structure of labels familiar to all

writers of assembler programs.

codeS (while e do sl od) � valueNeededlocVars =

l

1

:codeE e �;

jfalse l

2

;

codeSL sl � false locVars;

ujmp l

1

;

l

2

:unit valueNeeded

Also when a value is output, we leave a dummy value on the stack if the value is

needed. Otherwise, the dummy value is directly popped o� the stack again.

13

contains the size of the local environment. The size is needed for creating

correct addresses during the translation of def.

� codeSL : S

+

� AdrEnv�Bool � Int ! Code

translates sequences of statements.

� codeE : E� AdrEnv! Code

translates expressions in a given address environment. As mentioned above,

an expression e is translated into a code sequence, whose execution leaves the

value of e on the stack.

4.1 Simple Expressions

Integers and booleans are translated into instructions pushint and pushbool that

load integers or booleans onto the stack, respectively. For every unary and binary

operator there is a corresponding machine instruction, which is not included in

Fig. 6. The operands of an operator expression are evaluated �rst. The machine

instruction related to the operator takes them from the stack and replaces them by

the result of the operation.

codeE i � = pushint i

codeE b � = pushbool b

codeE (op

un

e)� = codeE e �;

op

un

codeE (e

1

op

bin

e

2

) � = codeE e

1

�;

codeE e

2

�;

op

bin

4.2 Variables and Assignment

A variable v occurring in an expression has to be translated into a machine instruc-

tion that loads the value assigned to v in the current run time environment onto the

stack. The address environment � tells us where to �nd the value of v.

codeE v � = getVar v �

The auxiliary function getVar looks up v in the address environment and generates

the appropriate instruction. The instruction pushloc loads a variable from the local

environment in the current frame onto the stack, whereas pushinst loads instance

variables from the current object onto the stack.

getVar v � =

8

<

:

pushloc i if �(v) = (LOC; i)

pushinst i if �(v) = (INST; i)

An assignment v := e as a statement is compiled by the function codeS. We proceed

as follows: we �rst translate the expression on the right-hand side of the assignment,

thus computing the value of e. After that, the value of e lies on top of the stack and

has to be moved to the location designated to v in the address environment.

If the value of the whole statement is not needed | this is indicated by the third

argument being false, we can safely pop the value of e o� the stack, otherwise we

have to push `unit' onto the stack.

12

instruction de�nition comment

pushunit SP := SP+ 1;

ST[SP] := unit;

push the

value unit onto

the stack

pushbool b SP := SP+ 1;

ST[SP] := b;

push a boolean

onto the stack

pushint i SP := SP+ 1;

ST[SP] := i;

push an integer

onto the stack

pushloc i SP := SP+ 1;

ST[SP] := ST[FP+ i];

push a local vari-

able onto the

stack

storeloc i ST[FP+ i] := ST[SP]; store a local vari-

able

pushinst i SP := SP+ 1;

ST[SP] := HE[ST[FP]]:instV ars[i];

push an instance

variable onto the

stack

storeinst i HE[ST[FP]]:instV ars[i] := ST[SP]; store an instance

variable

output print(ST[SP]);

ST[SP] := unit;

print the top ele-

ment of the stack

ujmp l PC := l; go to label l

jfalse l if ST[SP] = false then PC := l �;

SP := SP� 1;

jump on false

pop n SP := SP� n; pop n elements

from the stack

slide n ST[SP� n] := ST[SP];

SP := SP� n;

slide up a value on

the stack

mark ST[SP+ 2] := FP;

SP := SP+ 2;

create part of new

stack frame

call l

m

; n FP := SP � n;

ST[FP� 2] := PC;

PC := l

m

;

go to the code of a

method

send m;n FP := SP � n;

ST[FP� 2] := PC;

if newAdr = undef

then error \Method not found"

else PC := newAdr fi;

where newAdr = lookup(HE[ST[FP]]:mltable;m)

send a message m

with n arguments

return PC := ST[FP� 2];

ST[FP� 2] := ST[SP];

SP := FP� 2;

FP := ST[FP� 1];

give up a stack

frame

makeobject table,n HP := HP+ 1;

HE[HP] := (mltable = table;

instVars =< undef; : : : ; undef

| {z }

ntimes

>);

SP := SP+ 1;

ST[SP] := HP;

create a new ob-

ject

Figure 6: Machine instructions

11

4 The Translation Function

For every syntactic category, there is a corresponding translation function that trans-

lates elements of this category into code, i.e. sequences of instructions. Expressions,

for instance, are translated by the function codeE into code which, when executed,

computes the value denoted by the expression. The instruction set of our abstract

machine can be found in Fig. 6.

In order to generate instructions that access variables correctly | either by read-

ing or writing them|, almost every translation function has an address environment

as additional parameter. The set of variables visible at every point can be divided

into local variables { these are formal arguments of methods or variables introduced

by def-statements { and instance variables of objects. Furthermore, these two sets

are known at compile time, so that addressing can be accomplished by arbitrarily

arranging the variables in these sets. At run time, local variables are stored in a

continuous block of the current frame, whereas instance variables are stored on the

heap in the vector of the current object. Local variables are addressed via the FP

register, instance variables are addressed relative to the beginning of the vector. An

address environment � is thus a function

� : V ! fLOC; INSTg � N

mapping a variable v to a pair (k; a). The �rst component k 2 fLOC; INSTg tells

us, whether v is a local or an instance variable, i.e. whether v is stored in the current

frame or in the current object. The second component a gives the position relative

to the beginning of the respective memory area.

We write address environments � as lists of bindings [v

i

! (k

i

; a

i

)]

n

i=1

. We denote

the set of all address environments by AdrEnv . The notation �[v

i

! (k

i

; a

i

)]

n

i=1

denotes an environment where the bindings to the variables v

i

; i = 1; : : : ; n in � get

overwritten by the newer bindings v

i

! (k

i

; a

i

).

It is now time to give an overview of all the translation functions we will use

below in describing the translation process. The result of every translation function

is a code sequence, i.e. an element of Code.

� codeP : P ! Code

translates whole programs into code sequences.

� codeC : Class! Code

translates class de�nitions into code sequences.

� codeM : Meth � AdrEnv! Code

translates a method meth. In the body of meth you can refer to the instance

variables that were introduced in the same class de�nition as meth. Therefore,

codeM needs an address environment as additional argument to deal with

these variables.

� codeS : S �AdrEnv �Bool � Int ! Code

translates statements in a given address environment. Note, that in O'small

statements also denote values. The third argument of codeS indicates whether

this value is needed after the execution of the statement. The fourth argument

10

crucial in object-oriented programming, the dynamic assignment of actual methods

to messages should be as e�cient as possible. In O'small, however, class structure

is static and cannot change at run time. Thus, for every class c we can determine at

compile time which message m is understood by objects from c and which method

is assigned to m. With every class c, one can associate a function

f

c

:M ! Label

where Label denotes the set of indices into the program store. For a message m,

f

c

(m) denotes the beginning of the translation of the method that is assigned to

m. How f

c

is computed for every class c will be described in more detail in a later

section when describing how class de�nitions are translated. From this follows that

the second component of the representation of an object must be a representation

of the function f

c

, provided c is the class of the object. Functions f

c

are represented

by the abstract data type methodLookupTable. We assume that the following two

functions are available on methodLookupTable:

makeTable : 2

Meth

! methodLookupTable

lookup : M ! LABEL

An object is therefore represented in the heap as a structure

(mltable : methodLookupTable; instVars : array[1::n])

3.4 Method Lookup

Looking at Fig. 4 we see that a class de�nition consists of a new class name, the name

of the superclass, a vector of instance variables together with their initialization, and

a list of methods. We can regard the whole set of a program's class de�nitions as a

tree (inheritance hierarchy) with the base class as its root. What kind of information

do we need about classes at run time?

Since we have top-level classes in O'small, we know that the inheritance hi-

erarchy does not change at run time. Regardless of the choice of semantics, be it

wrapper semantics [6] or method lookup semantics [5], we can calculate the method

lookup tables in advance. There is one table per class.

2

A method lookup table is a

partial mapping from message selectors to methods. We forget the inheritance tree

and unfold the implicit contents of the class.

In addition to the methods we need the set of instance variables and the expres-

sions that are used to initialize them. As already mentioned, we have encapsulated

instance variables, i.e. their name spaces are disjoint and they can only be accessed

in the class where they are declared and not in any subclass. This is di�erent from

Smalltalk.

This concludes the short overview of the machine. The next section reveals all

the details. While reading this section it is useful to permanently have access to

Fig. 5.

2

In this description, each object has its own table. Since the tables of objects of the same class

are identical, one shares them in the implementation.

9

The topmost stack cell is pointed to by the stack pointer SP. The stack itself

is divided into so-called stack frames, each frame corresponding to a method call,

or, stated otherwise, corresponding to an object to which a message was sent. The

frame pointer FP gives access to the topmost frame. A frame has the following

structure (see Fig. 5):

� Organizational cells

1. The continuation address PC

old

. This is the address in the program store,

where execution has to be continued after returning from the method

corresponding to the frame.

2. FP

old

, the saved FP, is a pointer to the previous frame.

3. The current object pointer (COP): It points into the heap to that object

to which the current message was sent.

These cells are installed by the caller of the method, i.e. by the sender of

the message. The �rst two of them serve to restore the right context after

completion of the method call. The third component (COP) gives access to

the current object's method lookup table and its instance variables.

� A local environment consisting of the arguments of the message and of local

variables introduced by def-statements. Note that all elements of the local

environment can be addressed via FP.

� A local stack where expressions are evaluated.

3.3 The Heap

Representations of objects are stored in the heap. Each heap cell contains an entire

object, i.e. a method lookup table and a vector of instance variables. The method

lookup table is only conceptually contained in each object. In a real implementation,

there would simply be a reference to the method lookup table of the class. Since

an object can have an arbitrary number of instance variables a heap cell can be

arbitrarily big.

There are two things that can happen to an object. Messages can be sent to

objects and the methods of the object's class can access its instance variables. The

set of all instance variables is known for each class at compile time. Therefore, one

component of the representation of an object must be a vector containing the values

of the instance variables of the object.

Assume that a message m with some arguments is sent to an object. Of course,

this message m should denote a method with name m. The body of this method

has to be evaluated in the context determined by the arguments of the message m

and the object to which the message was sent. In imperative languages with static

binding, such as PASCAL, if a procedure p is called, we can determine at compile

time which procedure is actually meant by p, i.e which procedure is bound to p.

In object-oriented languages another mechanism for binding, called late-binding, is

used. Here, the object to which message m was sent itself decides which method

is meant by m. This is usually called method lookup. Since message sending is

8

...
arg1

argn

FP

...
loc1

locm

COP

local

stack

SP

instVarsmlTable

FP

PCold

old

Figure 5: Stack frame

3.1 The Program Store

The program store is an array of instructions. Each instruction consists of an opcode

and an optional list of operands. Initially, the program counter PC is set on the �rst

instruction in the program store. In order to execute the program, the following

cycle is continually executed:

� load the current instruction (this is the instruction pointed to by the PC).

� increment the PC by one.

� interpret the loaded instruction.

The machine halts if during execution the instruction halt is encountered.

3.2 The Stack

The evaluation stack ST is an array of stack cells. A stack cell can contain one of

the following objects:

� an integer or boolean

� a reference to the heap

� a reference to the program store

� a reference to the stack

Therefore, stack cells must have a tag conveying the intended meaning of their

content. For the sake of simplicity, we will omit these tags in the description of the

abstract machine.

7

p ::= [class] [s]

class ::= class c

1

inheritsFrom c

2

def var v

1

:= e

1

.

.

.

var v

n

:= e

n

in meth

1

.

.

.

meth

k

ni

meth ::= meth m(x

1

; : : : ; x

n

) [s]

s ::= e

j if e then [s] else [s] fi

j v := e

j output e

j while e do [s] od

j def var v

1

:= e

1

,: : : , var v

n

:= e

n

in [s] ni

e ::= i (integer)

j b (booleans)

j self

j v (variables)

j op

un

e

j e

1

op

bin

e

2

j new c

j e:m(e

1

; : : : ; e

n

)

j super:m(e

1

; : : : ; e

n

)

Figure 4: Abstract Syntax of O'small

3 The Abstract Machine

In this section we give a brief overview of the abstract machine. We will describe

which memory areas are used by the machine, how they are structured and which

registers point to them. The exact functioning will become clearer in later sections.

The abstract machine consists of the following three memory areas:

� the program store PS, containing the translated program as a sequence of

machine instructions. The program counter PC points into the program store.

� the stack ST, where evaluation takes place, with stack pointer SP and frame

pointer FP.

� the heap HE, where representations of objects are stored. The Heap pointer

HP points to the last occupied cell of the heap.

6

a b = 5000

b b = 0

Account

b = 4995

fee = 5
p

PAccount

b = 4990

fee = 5
e

EAccount

Base

classes objects

Figure 3: Inheritance hierarchy

may check that the output for e results in 4990.

The abstract syntax of O'small is given in Fig. 4. Brackets stand for list with

at least one element. Statement lists are written with semicolons like in ordinary

imperative languages. If a class de�nes no new instance variables we omit def and

ni (cf. Fig 1 class EAccount).

Compilers try to compute a large amount of information in advance in order

to reduce the overhead at run time. We will discuss here which features can be

computed in advance (static features) and which have to be computed at run time

(dynamic features) in O'small. As opposed to Smalltalk, where classes are �rst-

class citizens, O'small classes are static. We believe that classes should be of

a longer duration than objects. Objects are created, change their states, and die

eventually by garbage collection. Classes describe the world and should change less

frequently. They should have the same characteristics as modules in other languages

(e.g. SML [11]). If a message is sent to an object we do not know which class the

object belongs to. Therefore, we have to look up the class of the object at run time

(Fig. 3). However, once we have the class of the object we can immediately �nd the

corresponding method. The \search" for the method through the ancestors can be

done at compile time because classes cannot change at run time. This is di�erent

from Smalltalk, where in principle all ancestors have to be searched because one

does not know whether the class hierarchy has changed or not.

5

def var a := new Account

var b := new Account

var p := new PAccount

var e := new EAccount

in

a.credit(5000);

output(a.balance); { ----> 5000 }

p.credit(5000);

output(p.balance); { ----> 4995 }

e.credit(5000);

output(e.balance); { ----> 4990 }

ni

Figure 2: The main program

object-oriented language. We will come back to method lookup when we discuss the

main program in Fig. 2. Method transact changes the internal state of the object.

O'small is a language for studying the essence of the inheritance mechanism. In

order to keep the language concise and thus manageable there is no elaborated

visibility concept for methods. In this example one would like the visibility of the

method transact to be constrained to this class and its descendants. Access from

outside should be limited to the �rst three methods.

The bank that used these accounts was in the red and one day a clever consultant

proposed to charge a fee for every operation on an account. Since the system was

programmed in an object-oriented way the change was quite simple. All that had

to be done was the creation of a subclass PAccount and create all new accounts as

members of this new class. Objects of this new class have an additional instance

variable fee. They inherit the instance variable b but, as already said, b is invisible

for the new methods. The transaction method is overwritten. With super we are

able to retrieve the method of the nearest ancestor class and thus the method that

has just been overwritten. Usually messages are sent to objects. Messages to super

are an exception. They are sent to the object itself but the method lookup starts in

the class above the class where the method that uses super is declared. Therefore,

the corresponding method to a message sent to super can be statically determined

while the method of a message sent to self cannot.

The main program that follows the class declarations is contained in Fig. 2. Four

objects are created. The message credit(5000) is sent to a. This results in the

message transact(5000) to a. The internal state of a is set to 5000 and this value

is output in the next line. The message credit(5000) is also sent to p. This results

in the message transact(5000) to p. This time the method transact of class

PAccount is found. Therefore, the internal state of p is set to 4995 and it is this

value that is output in the next line.

1

Before all the clients ran away, the bank introduced expensive accounts in accor-

dance with the theory that there is no observation without destruction. The reader

1

InO'small, statements and statement lists (Fig. 1) always return a value. Unlike Smalltalk,

which has an explicit return statement, O'small methods return the \last value".

4

We present an abstract machine in the tradition of the MaMa [15, 16] and the

P-Machine. The source language for the compiler is O'small [6], a dynamically

typed object-oriented programming language where classes have a more static nature

than in Smalltalk. Using the same framework as for imperative and functional

languages it is easy to see the di�erences and the similarities between the three

language groups.

The paper is structured as follows. Section 2 introduces O'small by an example

program. Section 3 gives an overview of the parts of the abstract machine without

going into details. Section 4 is the detailed description of the abstract machine in

form of the translation function. Here, the standard issues are presented before the

more interesting object-oriented issues to give the reader a chance to get used to

the functioning of the abstract machine. The reader familiar with object-oriented

programming may skip section 2. The reader familiar with abstract machines may

skip sections 4.1 through 4.3.

2 The Language O'small

O'small is a simple object-oriented language that can best be compared to

Smalltalk. Like Smalltalk it is class-based and uses pseudo-variables self

and super for inheritance. Classes in O'small are not �rst-class citizens like in

Smalltalk, they are top-level. We will discuss this important di�erence in the

remainder of this work. The syntax is di�erent and the concept of objects is not

as strictly advocated as in Smalltalk: e.g. there are primitive data types like

boolean, integer and the like.

We will explain the semantics of O'small by an example program (Fig. 1)

and use an informal operational method-lookup semantics. A formal semantics can

be found in [6]. The example program in Fig. 1 contains three class declarations.

The resulting inheritance hierarchy is contained in Fig. 3. O'small uses simple

inheritance. Multiple inheritance can be expressed by explicit wrappers [7]. These

features will be discussed later. Class Account inherits from the base class. The

latter is essentially the empty class where no methods are declared. Variable b is the

instance variable of objects of class Account. Instance variables contain the internal

state of objects. They can only be accessed by the methods of the class that declares

them, not by methods of subclasses. Thus we have encapsulated instance variables.

Instance variables are always initialized: There are no \nil" variables. The methods

of the class together with the methods of the ancestor classes make up the interface

of the object. In this case we have four methods because the ancestor class is empty.

Method balance returns the value of the instance variable b. Method credit sends

the message transact to self, i.e. the object itself.

Fig. 2 shows an object a that belongs to class Account. If a message is sent to

a, we start looking for a method with a corresponding name in class Account. If

no method with that name is found, we continue our search in the superclass. This

goes on until we reach the root of the inheritance tree, i.e. the base class. Since the

base class is empty we know upon our arrival there that no corresponding method

has been found. This means an error. This process is called method lookup and

we speak of method lookup semantics when we use this method for explaining an

3

class Account inheritsFrom Base

def var b := 0

in

meth balance() b

meth credit(n) self.transact(n)

meth debit(n) self.transact(-n)

meth transact(x) b := b + x

ni

class PAccount inheritsFrom Account

def var fee := 5

in

meth transact(x) super.transact(x - fee)

ni

class EAccount inheritsFrom PAccount

meth balance() self.transact(0);

super.balance

Figure 1: Class de�nitions

� and the high-level language constructs can be translated in a simple and con-

cise way.

Abstract machines are a means to make implementations portable. A pack-

age consisting of a Pascal compiler written in Pascal and compiling to the P{

Machine [14], together with an assembler and an interpreter for P{code, both also

written in Pascal, was the basis for the worldwide distribution of the Z�urich Pas-

cal implementation. All that was required to port this implementation to a new

architecture, was the emulation or the compilation of the P{Machine.

The construction of an abstract machine is a design process without any theorems

or proofs. There have been attempts to formally deduce abstract machines from

given semantics of various languages [1, 10, 12, 13] but they neither developed new

machines nor could the deductions be proved correct automatically. We believe

that, if an abstract machine is well designed and easy to understand, the faith in

its correctness is easier to gain than the faith in the correctness of a long series of

transformations. After all, there can also be bugs in proofs.

Smalltalk was equipped with an abstract machine, namely the byte code ma-

chine of Goldberg et al. [5]. Since then, the compilation schemes of new Smalltalk

versions have considerably deviated from the original machine. However, we are not

aware of any more recent publications on abstract machines for object-oriented pro-

gramming languages. There have been papers on compilers. Johnson et al. [9]

present an optimizing compiler for Smalltalk which makes use of type declara-

tions that have been added to the language. Chambers et al. [2, 3, 4] worked on the

implementation of Self, a language that is even more dynamic than Smalltalk.

2

An Abstract Machine

for an Object-Oriented Language

with Top-Level Classes

Christoph Boeschen

Christian Fecht

Andreas V. Hense

Reinhard Wilhelm

Universit�at des Saarlandes

Postfach 151150

66041 Saarbr�ucken

fboeschen,fecht,hense,wilhelmg@cs.uni-sb.de

March 11, 1994

Abstract

Object-oriented programming languages where classes are top-level, i.e.

not �rst-class citizens, are better suited for compilation than completely dy-

namic languages like Smalltalk or Self . In O'small, a language with

top-level classes, the compiler can statically determine the inheritance hi-

erarchy. Due to late binding, the class of the receiver of a message must

be determined at run time. After that a direct jump to the corresponding

method is possible. Method lookup can thus be done in constant time.

We present an abstract machine for O'small based on these principles.

It is a concise description of a portable O'small implementation.

1 Introduction

Abstract machines have been used for essentially two purposes, to ease the language

implementation task and to make an implementation of a programming language

portable.

Real machines, those available on the market, closely reect the features of imper-

ative languages. Abstract machines bridge the gap between high-level programming

languages and the machine code of existing real machines. The instruction set of an

abstract machine is chosen such that

� each instruction can be implemented by a handful of instructions on a real

machine

1

An Abstract Machine

for an

Object-Oriented Language

with Top-Level Classes

Technischer Bericht Nr. A 02/94

Christoph B

�

oschen

Christian Fecht

Andreas V. Hense

Reinhard Wilhelm

Fachbereich 14

Universit

�

at des Saarlandes

Technischer Bericht Nr. A 02/94

Limited Distribution Notice

This report has been submitted for publication and will probably be copyrighted if ac-

cepted. It has been issued as a Research Report for early dissemination of its contents.

In view of the transfer of copyright to the publisher, its distribution prior to publication

should be limited to peer communication and speci�c requests.

